Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence (2008)

On-Line Case-Based Plan Adaptation for
Real-Time Strategy Games

Neha Sugandh and Santiago Ontaifion and Ashwin Ram
CCL, Cognitive Computing Lab
Georgia Institute of Technology
Atlanta, GA 303322/0280
{nsugandh,santi,ashwin}@cc.gatech.edu

Abstract

Traditional artificial intelligence techniques do not per-
form well in applications such as real-time strategy
games because of the extensive search spaces which
need to be explored. In addition, this exploration must
be carried out on-line during performance time; it can-
not be precomputed. We have developed on-line case-
based planning techniques that are effective in such do-
mains. In this paper, we extend our earlier work using
ideas from traditional planning to inform the real-time
adaptation of plans. In our framework, when a plan is
retrieved, a plan dependency graph is inferred to cap-
ture the relations between actions in the plan. The plan
is then adapted in real-time using its plan dependency
graph. This allows the system to create and adapt plans
in an efficient and effective manner while performing
the task. The approach is evaluated using WARGUS, a
well-known real-time strategy game.

Introduction

Artificial Intelligence (AI) techniques have been success-
fully applied to several computer games. However, in the
vast majority of computer games traditional Al techniques
fail to perform well because of the characteristics of the
game. Most current commercial computer games have vast
search spaces in which the Al has to make decisions in real-
time, rendering traditional search based techniques inappli-
cable. In particular, real-time strategy (RTS) games are one
good example of such games. RTS games have several char-
acteristics that make the application of traditional planning
approaches difficult: they have huge decision spaces (Aha,
Molineaux, & Ponsen 2005), they are adversarial domains,
they are non-deterministic and non fully-observable, and fi-
nally it is difficult to define postconditions for operators (ac-
tions don’t always succeed, or take different amount of time,
and have complex interactions that are difficult to model us-
ing typical planning representation formalisms).

To address these issues, we developed Darmok (Ontafién
et al. 2007), a case-based planning system that is able to deal
with the complexity of domains such as WARGUS. Case-
based planning (CBP) techniques (Spalazzi 2001) work by
reusing previous stored plans for new situations instead of

Copyright (© 2008, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

702

planning from scratch. A key problem in CBP is plan adap-
tation (Muiloz-Avila & Cox 2007); plans cannot be replayed
exactly as they were stored, specially in games of the com-
plexity of modern RTS games. More specifically, CBP tech-
niques for RTS games need adaptation techniques that are
suitable for dynamic and unpredictable domains. Plan adap-
tation techniques can be classified in two categories: those
adaptation techniques based on domain specific rules (do-
main specific, but fast) and those based on domain inde-
pendent search-based techniques (domain independent, but
slow). However, most previous work on plan adaptation
focus on one-shot adaptation where a single plan or set of
plans are retrieved and adapted before execution. In this
paper we are interested on developing domain independent
and search-free plan adaptation techniques that can be inter-
leaved with execution and that are suitable for RTS games.

Our plan adaptation technique is based on two ideas: a)
removing useless operations from a plan can be done by an-
alyzing a dependency graph without performing search and
b) the insertion of new operations in the plan can be dele-
gated to the case-base planning cycle itself, thus also getting
rid of the search. Our plan adaptation approach has been
implemented in the Darmok system with promising results.

In the remainder of this paper we first introduce related
work on plan adaptation. Then we present some of the is-
sues of planning in RTS games. After that, we introduce
the Darmok system focusing on plan adaptation. The paper
closes with experimental results and conclusions.

Related Work

Case-based reasoning (CBR) (Aamodt & Plaza 1994) is a
problem solving methodology based on reutilizing specific
knowledge of previously experienced and concrete problem
situations (cases). Case-based planning is the application
of the CBR methodology to planning, and as such, it is
planning as remembering (Hammond 1990). CBP involves
reusing previous plans and adapting them to suit new situa-
tions. There are several motivations for case-based planning
techniques (Spalazzi 2001): first, it inherits the psycholog-
ical plausibility from case-based reasoning, and second, it
has the potential to increase the efficiency with respect to
generative planners (although, in general, reusing plans has
the same or even higher worst-case complexity than plan-
ning from scratch (Nebel & Koehler 1992)).

Figure 1: A screenshot of the WARGUS game.

One of the first case-based planning systems was CHEF
(Hammond 1990), able to build new recipes based on user’s
request for dishes with particular ingredients and tastes.
CHEF contains a memory of past failures to warn about
problems and also a memory of succeeded plans from which
to retrieve plans. One of the novel capabilities of CHEF with
respect to classical planning systems is its ability to learn.
Each time CHEF experiences a planning failure, that means
that understanding has broken down and something has to be
fixed. Thus, planning failures tell the system when it needs
to learn. CHEF performs plan adaptation by a set of domain-
specific rules called TOPs.

Domain-independent nonlinear planning has been shown
to be intractable (NP-hard). PRIAR (Kambhampati &
Hendler 1992) was designed to address that issue. PRIAR
works by annotating generated plans with a validation struc-
ture that contains an explanation of the internal causal de-
pendencies so that previous plans can be reused by adapt-
ing them in the future. Related to PRIAR, the SPA system
was presented by Hanks and Weld (Hanks & Weld 1995).
The key highlight of SPA is that it is complete and system-
atic (while PRIAR is not systematic, and CHEF is neither
complete nor systematic), but uses a simpler plan represen-
tation than PRIAR. Extending SPA, Ram and Francis (Ram
& Francis 1996) presented MPA (Multi-Plan Adaptor), that
extended SPA with the ability to merge plans. The main is-
sue with all these systems is that they are all based on search-
based planning algorithms, and thus are not suitable for real-
time domains, where the system has to generate quick re-
sponses to changes in the environment.

For an extensive overview of case-based plan adaptation
techniques see (Mufioz-Avila & Cox 2007).

Case-Based Planning in WARGUS

Figure 1 shows a screen-shot of WARGUS, a real-time
strategy game where each player’s goal is to remain alive
after destroying the rest of the players. Each player has a
series of troops and buildings and gathers resources (gold,
wood and oil) in order to produce more troops and buildings.
Buildings are required to produce more advanced troops,
and troops are required to attack the enemy. In addition,
players can also build defensive buildings such as walls and
towers. Therefore, WARGUS involves complex reasoning

703

goals
state

Behavior «—>2_ Plan Plan %
])) » 1
L p— EXpEii' Game State Etlon actions |

7 Plan
Case
Base

. Behavior Execution :

]hehavwors
Annotation
Annotated Trace Wargus
Trace T00|

‘Behavior acquisition ExPert Expert

Adaptation

Case
Extractor

Figure 2: Overview of the Darmok system.

to determine the proper sequence of actions. A more de-
tailed discussion on the complexity of WARGUS as a plan-
ning domain can be found in (Ontafién et al. 2007).

In this section we will briefly describe the Darmok sys-
tem, in which we have implemented our plan adaptation
techniques. Darmok was designed to play the game of
WARGUS . In order to achieve this, Darmok learns behav-
iors from expert demonstrations, and then uses case-based
planning to play the game reusing the learnt behaviors. Fig-
ure 2 shows an overview of our case-based planning ap-
proach. Basically, we divide the process in two main stages:

e Behavior acquisition: During this first stage, an expert
plays a game of WARGUS and the trace of that game is
stored. Then, the expert annotates the trace explaining
the goals he was pursuing with the actions he took while
playing. Using those annotations, a set of behaviors are
extracted from the trace and stored as a set of cases.

e Execution: The execution engine consists of several mod-
ules that together maintain a current plan to win the game.
The Plan Execution module executes the current plan,
and updates its state (marking which actions succeeded
or failed). The Plan Expansion module identifies open
goals in the current plan and expands them. In order to do
that it relies in the Behavior Retrieval module, that given
an open goal and the current game state retrieves the most
appropriate behavior to fulfill the open goal. Finally, the
Plan Adaptation module (the focus of this paper) adapts
the retrieved plans according to the current game state.

In the remainder of this paper we will focus on the plan
on-line adaptation component. However, for completeness,
the next sections present a brief overview of the plan expan-
sion and plan execution modules, see (Ontafién et al. 2007)
for a more detailed explanation of those modules.

Plan Representation Language

The language that Darmok uses to represent behaviors has
been designed to allow a system to learn behaviors, repre-
sent them, and to reason about the behaviors and their in-
tended and actual effects. The basic constituent piece is the
behavior. A behavior has two main parts: a declarative part
and a procedural part. The declarative part has the purpose
of providing information to the system about the intended
use of the behavior, and the procedural part contains the ex-

Win

Behavior 0
Executing

Build Build\;
Base Attack
= | waiting

behaviors | [Behavior 1

open

goals actions

update
plan

Plan \succeeded) Plan
Expansion Execution
I adapted behaviors adapted behaviors I
Plan
new behaviors Adaptation failed behaviors

Figure 3: Interleaved plan expansion and execution.

ecutable behavior itself. The declarative part of a behavior
consists of three parts:

e A goal, that is a representation of the intended goal of the
behavior.

e A set of preconditions that must be satisfied before the
behavior can be executed.

o A set of alive conditions that represent the conditions that
must be satisfied during the execution of the behavior for
it to have chances of success.

Notice that unlike classical planning approaches, postcon-
ditions cannot be specified for behaviors, since a behavior is
not guaranteed to succeed. Thus, we can only specify the
goal a behavior pursues. The procedural part of a behavior
consists of executable code that can contain the following
constructs: sequence, parallel, action (basic actions in the
application domain), and subgoal (that need to be further ex-
panded). A goal may have parameters, and must define a set
of success conditions. A goal is a symbolic non-operational
description of the goal, while success conditions are actual
predicates that can be checked in the game state to evaluate
whether a goal was satisfied or not. Notice that a success
condition is distinct from a postcondition. Postconditions
are conditions to be expected after a behavior executes while
success conditions are the conditions that when satisfied we
can consider the behavior to have completed its execution.

Run-Time Plan Expansion and Execution

During execution, the plan expansion, plan execution and
plan adaptation modules collaborate to maintain a current
partial plan tree, as depicted in Figure 3.

A partial plan tree in our framework is represented as a
tree consisting of two types of nodes: goals and behaviors
(notice the similarity with HTN planning (Nau ez al. 2005)).
In the remainder of this paper we will refer to the partial plan
tree simply as the “plan”. Initially, the plan consists of a sin-
gle goal: “win the game”. Then, the plan expansion module
asks the behavior generation module to generate a behavior
for that goal. That behavior might have several subgoals, for
which the plan expansion module will again ask the behavior

704

generation module to generate behaviors, and so on. When a
goal still doesn’t have an assigned behavior, we say that the
goal is open. The top of Figure 3 shows an exemplification
of a partial plan tree.

Additionally, each behavior in the plan has an associated
state. The state of a behavior can be: pending (when it still
has not started execution), executing, succeeded or failed.
A goal that has a behavior assigned and where the behavior
has failed is also considered to be open. Open goals can
be either ready or waiting. An open goal is ready when all
the behaviors that had to be executed before this goal have
succeeded, otherwise, it is waiting.

The plan expansion module is constantly querying the
current plan to see if there is any ready open goal. When
this happens, the open goal is sent to the behavior generation
module to generate a behavior for it. Then, that behavior is
sent to the behavior adaptation module, and then inserted in
the current plan, marked as pending.

The plan execution module has two main functionalities:
check for basic actions that can be sent to the game engine
and check the status of plans that are in execution:

e For each pending behavior, the execution module evalu-
ates the preconditions, and as soon as they are met, the
behavior starts its execution.

e Basic actions that are ready and with all its preconditions
satisfied are sent to WARGUS to be executed. If the pre-
conditions are not satisfied, the behavior is sent back to
the adaptation module to see if the plan can be repaired.
If it cannot, then the behavior is marked as failed.

e Whenever a basic action succeeds or fails, the execution
module updates the status of the behavior that contained
it. When a basic action fails, the behavior is marked as
failed, and thus its corresponding goal is open again.

o I[fthe alive conditions of an executing behavior are not sat-
isfied, the behavior is marked as failed. If the success con-
ditions of a behavior are satisfied, the behavior is marked
as succeeded.

o Finally, if a behavior is about to be executed and the cur-
rent game state has changed since the time the behavior
generation module generated it, the behavior is handed
back to the plan adaptation module to make sure that the
plan is adequate for the current game state.

On-Line Case-Based Plan Adaptation

The plan adaptation module is divided in two submodules:
the parameter adaptation module and the structural plan
adaptation module. The first one is in charge of adapting
the parameters of the basic actions, i.e. the coordinates and
specific units (see (Ontafién e al. 2007) for an explanation
on how that module works). In this section we will focus on
the structural plan adaptation module.

Plans are composed of four basic types of elements: ac-
tions, which are the basic actions that can be executed; par-
allel plans which consist of component plans which can be
executed in parallel; sequential plans which consist of com-
ponent plans which need to be executed in sequence; and
sub-goal plans requiring further expansion. A sequential

plan specifically defines the order in which the component
plans need to be executed. We can further deduce depen-
dencies between different plans using their preconditions
and success conditions. We specifically consider only plans
which are completely expanded and do not contain a sub-
goal which further needs to be expanded. We generate a
plan dependency graph using the preconditions and success
conditions of the actions. This plan dependency graph in-
forms the plan adaptation process.

Plan Dependency Graph Generation

Each action has preconditions and success conditions, and
each goal has only a set of success conditions. Further, ev-
ery plan has a root node that is always a sub-goal. The plan
dependency graph generation, begins by taking the success
conditions of the root of the plan and finding out which of
the component actions in the plan contribute to the achieve-
ment of these success conditions. These actions are called
direct sub-plans for the subgoal. All direct sub-plans are
added to the plan dependency graph. Then the plan depen-
dency graph generator analyzes the preconditions of each
of these direct sub-plans. Let B; be an action in the plan
which contributes to satisfying the preconditions of a direct
sub-plan D;. Then, it adds B; to the plan dependency graph
and forms a directed edge from B; to D;. This directed
edge can be considered as a dependency between B; and
D;. This is done for each of the direct sub-plans. Further
this is repeated for each of the actions which are added to
the graph, for example B; until the graph no longer expands.
This process results in the formation of a plan dependency
graph with directed edges between actions representing that
one action contributes to the achievement of the precondi-
tions of another action.

Actions have success conditions along with precondi-
tions. However, a challenge in our work is that simple
comparison of preconditions of a plan P, with success con-
ditions of another plan P» is not sufficient to determine
whether P, contributes to achievement of preconditions of
P,. This is because there isn’t necessarily a direct corre-
spondence between preconditions and success conditions.
An example is the case where P; has a precondition testing
the existence of a single unit of a particular type. However,
P> may have a success condition testing the existence of a
given number n of units of the same type. An edge should
clearly be formed from P, to P;, however a direct compari-
son of the conditions will not yield this relation.

For that purpose, the plan dependency graph generation
component needs a precondition-success condition matcher
(ps-matcher). In our system, we have developed a rule-based
ps-matcher that incorporates a collection of rules for the ap-
propriate condition matching. For example, our system has
six different conditions which test the existence of units or
unit types. All of these can be compared to each other, and
thus the ps-matcher has rules that specify that all those con-
ditions can be matched. In some cases it is not clear whether
a relation exists or not. However it is necessary for our sys-
tem to capture all of the dependencies, even if some non-
existing dependencies are included. If a dependency was
not detected by our system, a necessary action in the plan

705

might get deleted. However, if our system adds extra de-
pendencies that do not exist the only thing that can happen
is that the system ends up executing some extra actions that
would not be required. Clearly, executing extra actions is
better than missing some needed actions.

The plan adaptation following the creation of the plan de-
pendency graph has two sub-processes: elimination of un-
necessary actions, and insertion of extra actions. The first
one is performed as soon as the plan is retrieved, and the
second one is performed on-line as the plan executes.

Removal of unnecessary actions

The removal of actions proceeds using the plan dependency
graph. Given a plan for a goal, the plan dependency graph is
generated and the success conditions of each direct plan are
evaluated for the game state at that point of execution. This
gives a list L of direct plans whose all success conditions
are satisfied and hence do not need to be executed. Now,
consider L as the list of actions that can be removed from
the plan corresponding to the plan dependency graph. All
actions B which are present only on paths terminating on an
action D such that D € L can be removed and hence can be
added to L. This is repeated until L becomes stable and no
new plan is added to it. All actions in L are removed from
the plan dependency graph. The resulting plan dependency
graph has only those actions whose success conditions are
not satisfied in the given game state and which have a path
to a direct plan, also with success conditions not satisfied in
the given game state.

Adaptation for unsatisfied preconditions

If the execution of an action fails because one or more of its
preconditions are not satisfied, the system needs to create a
game state where the given preconditions are satisfied so that
the execution of the plan can proceed. To enable this, the
adaptation module inserts satisfying goals in the plan (one
goal per unsatisfied precondition). The satisfying goals are
such that when plans to achieve the goals is retrieved and
executed, the success of the plans implies that the precon-
ditions of the failed action are satisfied. When an action P;
fails to proceed because a precondition C is not satisfied,
a satisfying goal Gy for C; is formed. P; is replaced by a
sequential plan containing a subgoal plan with goal GG; fol-
lowed by P .

When the modified plan is handed back to the plan exe-
cution module, it is inserted into the current plan. Then, the
plan expansion module expands the new goal G; by asking
the behavior retrieval module to retrieve a behavior.

Notice that the plan adaptation module performs two ba-
sic operations: delete unnecessary actions (which is per-
formed by an analysis of the plan dependency graph), and
insert additional actions needed to satisfy unsatisfied pre-
conditions. This last process is performed as a collaboration
between several modules: the plan execution module identi-
fies actions that cannot be executed, the adaptation compo-
nent identifies the failed preconditions and generates goals
for them, and the plan expansion and plan retrieval modules
expand the inserted goals.

Sequence
@ Harvest(0,16) Sequence
(Hw) Harvest(17,23) (H8) Harvest(0,16)
@ Upgrade(4,"keep”) @ Harvest(17,23)
Build(23,"Stables”) (1) Train(8,"Knight’)
@ Train(8,"Knight”)

t
®

$

®

Figure 4: Exemplification of the plan adaptation action elim-
ination process. On the top we can see the original and the
adapted plan, and on the bottom we can see the generation
and adaptation of the plan dependency graph.

Example

Imagine that in a particular game state the system needs to
train a knight. To do so, the behavior shown in the top-left
part of Figure 4 is retrieved, consisting of 5 steps: send a
peasant to harvest gold, send a peasant to harvest wood, up-
grade the townhall to a keep, then built stables, and finally
train a knight. Assume that at the moment when the behavior
was retrieved, the system has already built stables.

First, the plan dependency graph is constructed (shown in
the bottom left of Figure 4). We can see that since the three
actions UK, BS, and TK need gold and wood, we do not
know if they depend or not on the first two actions (which
harvest wood and gold), thus, the dependencies are included
to be in the safe side. Moreover, in order to train knights,
stables are needed, thus, there is a dependency between BS
and 7K. Finally, in order to build stables, we need a keep, so
there is also a dependency between UK and BS.

The next step is to determine the set of direct sub-plans.
In this case, itis TK, shaded to grey in Figure 4. Then, the set
L of actions that can be removed is formed, and the actions
in L are deleted from the plan. As we can see in the bottom
middle of Figure 4 BS is not needed since its success con-
ditions are already satisfied (the stables already exist), and
thus UK is also not needed since it only contributes to BS.
Thus, L = {UK, BS}, and UK and BS are removed from
the plan, as we can see in the bottom right part of Figure
4. From the plan dependency graph, the adapted behavior
is reconstructed and the final result can be seen in the top
right of Figure 4, that consists only of the three actions that
contribute to the achievement of the goal.

When the behavior is being executed, the adaptation mod-
ule is still active. In particular, let us imagine that when the
behavior in our example is being executed our system has no
peasants (needed to execute the first two actions). The first
two actions won’t be able to be executed and that will be de-
tected by the plan execution module, that will send the plan
again to the adaptation module for further adaptation. The
plan adaptation then identifies which are the preconditions

706

Sequence
SG1-HP | SG(HavePeasant)
@ Harvest(0,16)
SG(HavePeasant)
@ Harvest(17,23)

@ Train(8,"Knight”)
4

1t
88 , &6
. .

Figure 5: Exemplification of the plan adaptation precondi-
tion satisfaction process. On the top we can see the original
and the adapted plan, and on the bottom we can see the gen-
eration and adaptation of the plan dependency graph.

Sequence
@ Harvest(0,16)
@ Harvest(17,23)
® Train(8,"Knight”)

that are not satisfied of the actions that cannot be executed.
In our example, both actions require a peasant. Thus, the
adaptation module will insert previous to each of those two
actions a sub-goal consisting of having a peasant. An illus-
tration of this process can be seen in Figure 5.

Experimental results

We conducted two sets of experiments turning the plan adap-
tation on and off respectively. The experiments were con-
ducted on 10 different variations of the well known map
“Nowhere to run nowhere to hide” (NWTR). NWTR maps
have a wall of trees separating the opponents that introduces
a highly strategic component in the game (one can attempt
ranged attacks over the wall of trees, or prevent the trees
to be chopped by building towers, etc.). The appropriate
strategies for these maps depend upon multiple factors, es-
pecially the thickness of the wall of trees, some variations
had openings in the wall, or others had very narrow sec-
tions that could be easily tunneled through. 7 different ex-
pert demonstration were used for evaluation; 5 of the expert
traces are on different maps belonging to the set of 10 maps
used for evaluation while the other 2 expert traces were for
completely different “Garden of War” (GoW) maps (large
maps with an empty area in the middle where a lot of gold
mines are located). Each one of the expert demonstrations
exemplified different strategies: “rushing” strategy, ranged
attacks using ballistas or blocking the enemy from attacking
using towers among others.

It is important to notice that the performance of the sys-
tem greatly depends on the quality of the demonstrations,
and it is part of our future work to fully evaluate that di-
mension. The traces used in this paper were recorded by
an experienced (but non-expert) player. We conducted the
experiments using different combinations of the traces. We
report the results in 70 games where the system learnt from
1 trace, 2 traces, 3 traces and 6 traces at a time. We also
report the results in 10 games using all 7 traces.

Table 1: Effect of Plan Adaptation on Game Statistics

No. of traces Adaptation Wins Draws Losses
1 Yes 14 6 50
1 No 14 10 46
2 Yes 19 7 44
2 No 11 10 49
3 Yes 22 7 41
3 No 21 9 40
6 Yes 18 4 48
6 No 9 4 57
7 Yes 5 0 5
7 No 1 1 8

Table 1 shows the results of the experiments. When using
a single trace as the case library, plan adaptation did not lead
to any improvement in the number of wins, while the num-
ber of draws decreased with plan adaptation. We observed
that using adaptation, the plan adaptation component some-
times removed certain actions that seemed useless, but that
had an impact further along in the game (and thus the adap-
tation component reinserted them again at the end), thus re-
sulting in sub-optimal performance. Moreover, when learn-
ing from one trace, all the cases “tie in” together better, and
adaptation has less value.

The results using more than one trace show a clear im-
provement in performance using plan adaptation. Here,
cases belonging to different traces are retrieved and exe-
cuted. Since the cases belong to different traces, there is
a much greater chance of redundant or missing actions be-
ing present. Our plan adaptation deals with these problems,
improving the performance of Darmok. When 3 traces were
used the improvement in performance is not as significant.
However, it was observed that most of the wins when adap-
tation was not being used resulted from cases retrieved from
a single trace, effectively following a single trace.

In the experiment where the system learnt from all the 7
traces, we can see how the system managed to improve per-
formance from 10% wins without adaptation to 50% wins
with adaptation. When considering these numbers, we must
take into account that our system is attempting to play the
whole game of WARGUS at the same granularity as a hu-
man would play, taking every single decision. Moreover, it
is important to emphasize that we are evaluating the perfor-
mance increase of Darmok with and without plan adaptation,
and not the absolute performance of Darmok.

Conclusions

We have presented on-line structural plan adaptation tech-
niques for real-time strategy games. Specifically, our tech-
nique divides the problem in two steps: removal of unnec-
essary actions and addition of actions to fill gaps in the se-
quence of actions obtained from cases. We implemented our
algorithm inside the Darmok system that can play the game
of WARGUS. Our techniques are domain-independent and
can be adapted for on-line plan adaptation in any domain.
Moreover, one of the important aspects of our techniques is

707

that they are efficient at the same time as effective, so they
can be applied for real-time domains in which other search-
based plan adaptation techniques cannot be applied.

Our techniques still have several limitations. Currently,
our plan adaptation techniques require a plan to be fully in-
stantiated in order to be adapted, thus we cannot adapt plans
that are still half expanded. As a consequence, the high level
structure of the plan cannot be adapted unless it’s fully in-
stantiated. This could be addressed by reasoning about in-
teractions between higher level goals, by estimating which
are the preconditions and success conditions of such goals
by analyzing the stored plans in the case-base to achieve
those goals. Another line of further research is to incorpo-
rate ideas from MPA in order to be able to merge several
plans into a single plan. This can be very useful and can in-
crease vastly the flexibility of the approach since sometimes
no single plan in the case base can achieve a goal, but a com-
bination will. Further formal analysis of the properties of the
algorithm and of its completeness and soundness (depending
on the content of the case-base) are also planned.

References

Aamodt, A., and Plaza, E. 1994. Case-based reasoning:
Foundational issues, methodological variations, and sys-
tem approaches. Artificial Intelligence Communications
7(1):39-59.

Aha, D.; Molineaux, M.; and Ponsen, M. 2005. Learn-
ing to win: Case-based plan selection in a real-time strat-
egy game. In ICCBR’2005, number 3620 in LNCS, 5-20.
Springer-Verlag.

Hammond, K. F. 1990. Case based planning: A frame-
work for planning from experience. Cognitive Science
14(3):385-443.

Hanks, S., and Weld, D. S. 1995. A domain-independednt
algorithm for plan adaptation. Journal of Artificial Intelli-
gence Research 2:319-360.

Kambhampati, S., and Hendler, J. A. 1992. A validation-
structure-based theory of plan modification and reuse. Ar-
tificial Intelligence 55(2):193-258.

Muioz-Avila, H., and Cox, M. 2007. Case-based plan
adaptation: An analysis and review. IEEE Intelligent Sys-
tems.

Nau, D.; Au, T.; llghami, O.; Kuter, U.; Wu, D.; Yaman,
F.; Mufioz-Avila, H.; and Murdock, J. 2005. Applications
of shop and shop2. Intelligent Systems 20(2):34-41.
Nebel, B., and Koehler, J. 1992. Plan modifications ver-
sus plan generation: A complexity-theoretic perspective.
Technical Report RR-92-48.

Ontafién, S.; Mishra, K.; Sugandh, N.; and Ram, A. 2007.
Case-based planning and execution for real-time strategy
games. In Proceedings of ICCBR-2007, 164—178.

Ram, A., and Francis, A. 1996. Multi-plan retrieval and
adaptation in an experience-based agent. In Leake, D. B.,
ed., Case-Based Reasoning: Experiences, Lessons, and
Future Directions. AAAI Press.

Spalazzi, L. 2001. A survey on case-based planning. Arti-
ficial Intelligence Review 16(1):3-36.

